Excellent dispersion of MWCNTs in PEO polymer achieved through a simple and potentially cost-effective evaporation casting.

نویسندگان

  • Myounggu Park
  • Hyonny Kim
  • Jeffrey P Youngblood
  • Sang Woo Han
  • Eric Verplogen
  • A John Hart
چکیده

A simple, reliable and potentially cost-effective composite film casting procedure is presented using the evaporation of solvent (water) from a dilute mixture of multiwalled carbon nanotubes (MWCNTs) and polyethylene oxide (PEO) polymer. It is found that the fabrication method develops excellent dispersion of MWCNTs in PEO confirmed by morphology observations, final crystallinity of polymer (amorphous) and a lower percolation threshold (closer to theoretical value) as well as higher electrical conductivity. A film thickness prediction model is derived based upon the fact that final film thickness is mainly dependent upon the dimensions of the casting mold and the loading of the MWCNTs and polymer. This simple model provides important insight that the material loss and the actual density of the base polymer are critical factors making the current casting method truly cost effective and controlling final thickness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

One Pot Chemically Attachment of Amino Groups on Multi walled Carbon Nanotubes Surfaces

Functionalization of multiwalled carbon nanotubes (MWCNTs) with NH2 groups under a one pot reaction is studied. During the first step of the reaction, Cl and CHCl2 groups were attached to the surfaces of MWCNTs through an electrophilic addition reaction. In the second step of process, Cl atoms were replaced with NH2 and amino groups (ethylene diamine and but...

متن کامل

Preparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature

The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...

متن کامل

Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

UNLABELLED A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 22 41  شماره 

صفحات  -

تاریخ انتشار 2011